
CS 171, Spring 2024 Discussion Section Prof. Sanjam Garg

CS 171: Discussion Section 4 (2/12)

1 Pseudorandom Functions

Let f : {0, 1}n × {0, 1}n → {0, 1}n be a pseudorandom function. For each of the candidates
below prove whether it is pseudorandom or not.

1. f ′
k(x) = fk(x) ∥ fk(x) where x flips all the bits of x.

2. f ′
(k1,k2)

(x) = fk1(x) ∥ fk2(x).

Solution

1. No. Query the oracle on x and x and when the oracle is the function f ′, the answers
will be y1 ∥ y2 and y2 ∥ y1 respectively. On the other hand, on a random function the
answers will not be of this form except with probability 1/22n.

2. Yes. We will show this via a hybrid argument.

• Hyb0(x) := fk1(x) ∥ fk2(x).

• Hyb1(x) := R1(x) ∥ fk2(x) where R1 is a random function.

• Hyb2(x) := R1(x) ∥ R2(x) where R1, R2 are random functions.

Claim 1.1. For any polynomial time distinguisher D,

|Pr[DHyb0(·)(1n) = 1]− Pr[DHyb1(·)(1n) = 1]| ≤ negl(n)

Proof. Assume for the sake of contradiction that there exists an adversary D that dis-
tinguishes between oracle access to the functions in Hyb1 and Hyb0 with non-negligible
advantage. We will construct an adversary D′ against the pseudorandomness property
of fk1 . D

′ samples k2 randomly. D′ runs D and on any oracle query x made by D, D′

queries its own oracle on x to get y. D′ returns y ∥ fk2(x). It is easy to see that D′

runs in polynomial time since D runs in poly time.

If D′ has been given access to the fk1 oracle then its oracle responses are identically
distributed to Hyb0(·). Otherwise the responses are distributed identically to Hyb1(·).
Hence the advantage of D′ distinguishing oracle access to fk1() and the random oracle
is same as the advantage of D′ in distinguishing between oracle access to Hyb0 from
Hyb1, and this is assumed to be non-negligible. A contradiction.

Claim 1.2. For any polynomial time distinguisher D,

|Pr[DHyb1(·)(1n) = 1]− Pr[DHyb2(·)(1n) = 1]| ≤ negl(n)

Proof. Assume for the sake of contradiction that there exists an adversary D that dis-
tinguishes between oracle access to the functions in Hyb1 and Hyb2 with non-negligible
advantage. We will construct an adversary D′ against the pseudorandomness property
of fk2 . D

′ runs D and on any oracle query x made by D, D′ queries its own oracle on
x to get y. D′ returns r ∥ y where r is an uniformly chosen random string. It stores

1

CS 171, Spring 2024 Discussion Section Prof. Sanjam Garg

(x, r) and the next time D queries x, it uses the stored value to answer this query. It
is easy to see that D′ runs in polynomial time since D runs in poly time.

If D′ has been given access to the fk2 oracle then its oracle responses are identically
distributed to Hyb1(·). Otherwise the responses are distributed identically to Hyb2(·).
Hence the advantage of D′ distinguishing oracle access to fk2() and the random oracle
is same as the advantage of D′ in distinguishing between oracle access to Hyb1 from
Hyb2, and this is assumed to be non-negligible. A contradiction.

2

CS 171, Spring 2024 Discussion Section Prof. Sanjam Garg

2 Psuedorandom Permutations

Assume that pseudorandom permutations exist. Show that there exists a function that is a
pseudorandom permutation but not a strong pseudorandom permutation.

Solution Let F be a pseudorandom permutation. We now define another permutation
F ′ such that

F ′
k(x) :=


0n, for x = k
Fk(k), for x = F−1(0n)
Fk(x), otherwise


Claim 2.1. F ′ is a pseudorandom permutation.

Proof. Assume for the sake of contradiction that F ′ is a not a pseudorandom permutation.
That is, there exists an attacker A such that for all negligible functions negl(n),

|Pr[AF ′
k(·)(1n) = 1]− Pr[AR(·)(1n) = 1]| ≥ negl(n)

where R is a random permutation. We will show that such an attacker can be used to
contradict the pseudorandomness of F .

Let B be an attacker against the pseudorandomness of F . B runs A internally and then
uses its oracle F (·) to answer all of A’s queries. Finally, B outputs whatever A outputs. We
now arugue that the probability that A outputs when 1 when given access to F ′ is the same
as the probability that B outputs 1 when given access to F . Notice that the only difference
between F and F ′ is on two inputs, k and F−1

k (0n). As long as A does not make a query on
these two points, it follows that B’s responses to A’s queries are consistent with F ′. But if
A makes any of these two queries, then B can use these two queries to distinguish between
F and the random permutation. Thus, B contradicts the pseudorandomness of F .

It can be easily seen that F ′ is not a strong pseudorandom permutation as we can query
that inversion oracle on 0n to learn the key k.

3

