
UC Berkeley — CS171 : Undergraduate Cryptography Final Exam
Prof. Sanjam Garg May 7, 2024

Final Exam

Name:

SID:

• You may consult at most 3 double-sided sheets of handwritten notes. Apart from
that, you may not look at books, notes, etc. Calculators, phones, computers, and
other electronic devices are NOT permitted for looking up content. However,
you may use an electronic device such as a tablet for writing your answers.

• You have 170 minutes to complete the exam. For DSP students, you may have
1.5×170 = 255 minutes or 2×170 = 340 minutes, depending on your accommodation.

• The instructors will not be answering questions during the exam. If you feel that
something is unclear, please write a note in your answer.

1 Multiple Choice (25 Points)

In the multiple choice section, no explanations are needed for your answers. Please
mark your answers clearly.

In a question with multiple correct answers, your score will be proportional to the
number of correct answers selected minus the number of incorrect answers selected.

1. Let f and g be functions that map N → R≥0. Let f be a negligible function and let g be a
non-negligible function. Which of the following functions must be non-negligible? There may
be several.

A(n) = f(n)2 + g(n)

B(n) = |g(n)− f(n)|

C(n) = 1
n · g(n)

D(n) = g(n) · f(n)

E(n) = g(n) · g(n)

F (n) = g(n) · g(n+ 1)

Solution: A,B,C,E

2. Suppose CDH is hard for some cryptographic group. Then, which of the following statements
must be true? There may be several.

A. PRGs exist.

B. DBDH is hard for some cryptographic group.

C. DDH is easy for some cryptographic group.

D. Discrete log is hard for some cryptographic group.

Solution: A, D

3. Let e : G×G→ GT be a bilinear map for which the decisional bilinear Diffie-Hellman (DBDH)
problem is computationally hard. Which of the following problems are also computationally
hard?

2

Name:

A. Decisional Diffie Hellman in G.

B. Computational Diffie Hellman in G.

C. Discrete Log in G.

D. Discrete Log in GT .

Solution: B, C, D

4. Which of the following is a secure way to construct an authenticated encryption scheme:

A. Encrypt and MAC

B. Encrypt then MAC

C. MAC then Encrypt

D. MAC, then encrypt, and then MAC again

Solution: B, D

5. An Identity Based Encryption scheme can be used to construct which of the following prim-
itives?

A. One-way functions

B. One-way permutations

C. Digital signatures

D. CCA-secure public key encryption

Solution: A, C, D

3

2 CCA Security

2.1 A Scheme For n-Bit Messages (20 Points)

Consider the following secret-key encryption scheme with message spaceM = {0, 1}n.

Let F : {0, 1}n × {0, 1}2n → {0, 1}2n be a strong pseudorandom permutation.

1. Gen(1n): Sample k ← {0, 1}n and output k.

2. Enc(k,m): Sample r ← {0, 1}n. Compute and output

c = Fk(m ∥ r)

3. Dec(k, c): Compute
m′ ∥ r′ = F−1

k (c)

where m′, r′ ∈ {0, 1}n. Then output m′.

Question 1: Give the security definition for a strong PRP.

Solution: Intuitively, a strong PRP is a permutation that appears random to an adversary who
gets query access to the permutation and its inverse.

Definition 2.1 (Strong PRP) Let F : {0, 1}n × {0, 1}2n → {0, 1}2n. For any k ← {0, 1}n, let
Fk(·) and F−1

k (·) be efficiently computable.

F is a strong pseudorandom permutation if for all probabilistic polynomial-time distinguishers
D, there exists a negligible function negl such that∣∣∣Pr [DFk(·),F−1

k (·)(1n)→ 1
]
− Pr

[
Df(·),f−1(·)(1n)→ 1

] ∣∣∣ ≤ negl(n)

The first probability is taken over the randomness of sampling k ← {0, 1}n and the randomness of
D. The second probability is taken over the randomness of sampling f uniformly at random from
the set of all permutations mapping {0, 1}2n → {0, 1}2n, as well as the randomness of D.

Question 2: Prove that Π := (Gen,Enc,Dec) is CCA2-secure.

Solution:

Theorem 2.1 Π := (Gen,Enc,Dec) is CCA2-secure.

Proof:

4

Name:

1. Assume toward contradiction that there is an adversary A that breaks CCA2-security of Π.
Then we will use A to construct an adversary B that breaks the strong PRP security of
F . This is a contradiction because F is satisfies strong PRP security. Therefore, the initial
assumption was false, and in fact Π is CCA2-secure.

2. B will play in the strong PRP game for F and simulate the CCA2 security game.

In the strong PRP game, the challenger samples a PRP key k ← {0, 1}n and samples a
permutation f : {0, 1}2n → {0, 1}2n uniformly at random. Then the challenger gives B query
access to two oracles (O,O−1), which are either

(
Fk(·), F−1

k (·)
)
or
(
f(·), f−1(·)

)
.

Construction of B:
B runs A(1n) and simulates the CCA2 security game.

(a) Encryption Queries: When A outputs a message m ∈ {0, 1}n to be encrypted:

i. B samples r ← {0, 1}n.
ii. B computes c = O(m ∥ r) and sends c to A.

(b) Challenge query: A outputs two messages m(0),m(1) ∈ {0, 1}n.
i. B samples b← {0, 1} and r∗ ← {0, 1}n.
ii. B computes c∗ = O(m(b) ∥ r∗) and sends c∗ to A.

(c) Decryption Queries: When A outputs a ciphertext c ∈ {0, 1}2n to be decrypted:

i. B checks whether c = c∗. If so, B outputs ⊥. If not, B continues.

ii. B computes (m′ ∥ r′) = O−1(c), where m′, r′ ∈ {0, 1}n. Then B sends m′ to A.
(d) In the end A outputs a bit b′, and B checks whether b = b′. If so, B outputs 1. If not,
B outputs 0.

3. Pseudorandom Case: If (O,O−1) =
(
Fk(·), F−1

k (·)
)
, then B simulates the CCA2 security

game exactly. In particular,

Pr
[
DFk(·),F−1

k (·)(1n)→ 1
]
= Pr[b′ = b] = Pr[A wins the strong PRP security game] ≥ 1

2
+non-negl(n)

4. Truly Random Case: (O,O−1) =
(
f(·), f−1(·)

)
. With 1 − negl(n) probability over the ran-

domness of r and f : (m(b)||r∗) and c∗ are not queried by A during an encryption or decryption
query. Then c∗ is a uniformly random string that is independent of all the queries made by
A, so c∗ reveals no information about b. Therefore:

Pr
[
Df(·),f−1(·)(1n)→ 1

]
=

1

2
± negl(n)

5. In summary:∣∣∣∣∣Pr [DFk(·),F−1
k (·)(1n)→ 1

]
− Pr

[
Df(·),f−1(·)(1n)→ 1

] ∣∣∣∣ ≥ non-negl(n)− negl(n)

≥ non-negl(n)

Therefore, B breaks the strong PRP security of F .

5

Question 3: Is Π = (Gen,Enc,Dec) necessarily CPA-secure? No proof is needed.

Yes No

Solution: Yes, Π is CPA-secure because CCA2-security implies CPA-security.

6

Name:

2.2 Concatenating The Base Scheme (15 Points)

Now we will construct a candidate encryption scheme Π′ = (Gen′,Enc′,Dec′) for tn-bit messages,
where t = poly(n).

As before, let Π = (Gen,Enc,Dec) be a CCA2-secure secret-key encryption scheme for n-bit mes-
sages. Then, for a message m ∈ {0, 1}tn, let m = (m1 ∥ · · · ∥ mt), where for each i ∈ [t],
mi ∈ {0, 1}n. Finally, Π′ = (Gen′,Enc′,Dec′) is defined as follows:

1. Gen′(1n) = Gen(1n)

2. Enc′ (k,m): Output

c = (c1 ∥ · · · ∥ ct) =
(
Enc(k,m1) ∥ · · · ∥ Enc(k,mt)

)
3. Dec′(sk, c) = Dec(k, c1) ∥ · · · ∥ Dec(k, ct)

Question 4: Is Π′ neccessarily CPA-secure? No proof is needed.

Yes No

Solution: Yes

Question 5: Is Π′ necessarily CCA2-secure?

Yes No

Prove your answer.

Solution: Π′ is not CCA2-secure. We will construct an adversary A that breaks CCA2-security.

Construction of A:

1. Output challenge messages m(0) = 0tn and m(1) = 1tn and then receive the challenge cipher-
text

c∗ = (c∗1 ∥ · · · ∥ c∗t) = Enc′(k,m(b))

2. Choose an arbitrary message m(2) ∈ {0, 1}tn such that m
(2)
t /∈ {0n, 1n}. Then make an

encryption query on m(2) and receive

c(2) = (c
(2)
1 ∥ · · · ∥ c

(2)
t) = Enc′(k,m(2))

3. Make a decryption query on the following ciphertext:

c(3) := c∗1 ∥ · · · ∥ c∗t−1 ∥ c
(2)
t

and receive m(3) = Dec′
(
k, c(3)

)
.

7

4. If m
(3)
1 = 0n, then output b′ = 0. Otherwise output b′ = 1.

Analysis:

1. With overwhelming probability, c∗t ̸= c
(2)
t . This is because m

(b)
t ̸= m

(2)
t and Π satisfies

correctness.

2. If c∗t ̸= c
(2)
t , then c∗ ̸= c(2), so c(2) is a valid decryption query, and the challenger will decrypt

it as desired.

3. m
(3)
1 = m

(b)
1 . So if b = 0, then m

(3)
1 = 0n, and if b = 1, then m

(3)
1 = 1n. Therefore, A correctly

guesses the value of b.

8

Name:

3 One-Way Functions (25 Points)

Let f : {0, 1}n → {0, 1}n be a one-way function. Let x = (xL, xR) ∈ {0, 1}n × {0, 1}n be a generic
input. Now consider the following functions constructed from f :

1. g1(x) = f(xL) ∥ xR

2. g2(x) = f(xL)⊕ xR

3. g3(x) = f(xL) ∥ f(xR)

4. g4(x) = f(xL)⊕ f(xR)

Question: For each function (g1, g2, g3, g4), indicate whether it is necessarily a one-way function,
and prove your answer.

As a guideline, your answer for each gi should do one of the following:

• Prove that if f is a OWF, then gi is a OWF.

• Construct a OWF f and an adversary A such that when gi is constructed using this choice
of f , A can break the OWF security of gi.

Solution:

Claim 3.1 g1 is a OWF.

Proof: Assume for the sake of contradiction that g1 is not a OWF. We will use an adversary that
breaks the one-wayness of g1 to break the one-wayness of f , resulting in a contradiction.

Let A be the adversary that inverts g1 with non-negligible probability. We define adversary B
attempting to invert f as follows:

On input (1n, y) :

1. Sample x∗R ← {0, 1}n.

2. Run A on input (12n, y ∥ x∗R).

3. Receive x∗ = x ∥ x∗R from A and return x.

Analysis. Observe that if A inverts y ∥ x∗R under g1, then it returns x∗ = x ∥ x∗R such that
f(x) = y. In this case, B successfully inverts f . Then,

Pr[B inverts f] ≥ Pr[A inverts g1] = non-negl(n).

This contradictions our original assumption, so in fact, g1 is a one-way function.

9

Claim 3.2 g2 is not a OWF.

Proof: We will construct an adversary A that inverts g2. A works for any choice of f .

A works as follows. On input (12n, y) :

1. A chooses xL = 0n and xR = f(0n)⊕ y.

2. A outputs x = (xL, xR).

Analysis. Observe that

g2(x) = f(xL)⊕ xR = f(0n)⊕ f(0n)⊕ y = y

So A successfully inverts g2 on any input.

Claim 3.3 g3 is a OWF.

Proof: Assume for the sake of contradiction that g3 is not a OWF. We will use an adversary that
breaks the one-wayness of g3 to break the one-wayness of f , resulting in a contradiction.

Let A be the adversary that inverts g3 with non-negligible probability. We define adversary B
attempting to invert f as follows:

On input (1n, y) :

1. Sample x∗R ← {0, 1}n.

2. Run A on input (12n, y ∥ f(x∗R)).

3. Receive x′ = x′L ∥ x′R from A and return x′L.

Analysis. Observe that if A inverts y ∥ f(x∗R) under g3, then it returns x′ = x′L ∥ x′R such that
f(x′L) = y. In this case, B will successfully invert f . Then,

Pr[B inverts f] ≥ Pr[A inverts g3] = non-negl(n).

This contradictions our original assumption, implying that g3 is indeed a one-way functions.

Claim 3.4 g4 is not necessarily a OWF.

Proof:

1. First, let us construct a OWF f that will make g4 insecure. Let us start with a generic OWF
h : {0, 1}n → {0, 1}n−2. Next, denote the first n/2 bits of x by xL and the second n/2 bits
by xR. Now we will construct f as follows:

f(x) =

{
x xL = 0n/2 or xR = 0n/2

1 ∥ h(x) ∥ 1 else

10

Name:

2. We claim that f is a OWF. This is because the first case occurs with negligible probability:

Pr
x
[xL = 0n/2 or xR = 0n/2] ≤ 2 · 2−n/2 = negl(n)

In the second case (xL ̸= 0n/2 and xR ̸= 0n/2), f outputs h(x) with two extra bits, so inverting
f is equivalent to inverting h. This is just a proof sketch that f is a OWF, and we will omit
the full proof.

3. Now let g4 be instantiated with this choice of f . Then given y = g4(x), it is easy to find a
preimage of y. First, let yL be the first n/2 bits of y and yR be the second n/2 bits. Then,
choose

x′ = 0n/2 ∥ yR ∥ yL ∥ 0n/2

x′ is a preimage of y since

g4(0
n/2 ∥ yR ∥ yL ∥ 0n/2) = f(0n/2 ∥ yR)⊕ f(yL ∥ 0n/2)

= (0n/2 ∥ yR)⊕ (yL ∥ 0n/2)
= yL ∥ yR
= y.

11

4 Derandomizing Signatures (25 Points)

We will show how to convert a randomized signature scheme into a deterministic signature scheme
by replacing the random input with a PRF.

Let S = (Gen,Sign,Verify) be a secure signature scheme with message spaceM = {0, 1}n. In this
scheme, Sign is randomized and takes a random string r ← {0, 1}n. We write Sign(sk,m; r) to make
the random input explicit.

Let F : {0, 1}n × {0, 1}n → {0, 1}n be a secure PRF.

Consider the following signature scheme S ′ = (Gen′,Sign′,Verify′):

1. Gen′(1n):

(a) Sample (pk, sk)← Gen(1n).

(b) Sample k ← {0, 1}n.
(c) Output pk′ = pk and sk′ = (sk, k).

2. Sign′(sk,m): Output σ = Sign
(
sk,m;F (k,m)

)
.

3. Verify′(pk,m, σ) = Verify(pk,m, σ).

Note that Sign′ is deterministic.

Question: Prove that S ′ is a secure signature scheme.

Solution: The proof is similar to the answer to homework 5, question 3.

12

Name:

5 A Variation on El Gamal Encryption (20 points)

We will examine a variation on El Gamal encryption and prove that this version is also CPA-secure.

Consider the following candidate public key encryption scheme with message space M = {0, 1}.
Let (G, q, g)← G(1n) be a cryptographic group of prime order q for which DDH is hard.

1. Gen(1n):

(a) Sample (G, q, g)← G(1n).
(b) Sample x← Zq, and compute h = gx.

(c) Output pk = (G, q, g, h) and sk = (pk, x).

2. Enc(pk,m):

• If m = 0, then sample y ← Zq and output

c = (c1, c2) = (gy, hy)

• If m = 1, then sample y, z ← Zq independently. Next, output

c = (c1, c2) = (gy, gz)

3. Dec(sk, c): Output 0 if cx1 = c2 and output 1 otherwise.

Question 1: Fill in Dec(sk, c) above so that it is correct (except with negligible probability in n)
and it runs in probabilistic polynomial time.

13

Question 2: Prove that Dec(sk, c) is correct, except with negligible probability in n.

Solution:

Claim 5.1 The encryption scheme is correct.

Proof: When m = 0,

cx1 = (gy)x = (gx)y = hy = c2.

So decryption will output 0 with certainty.

When m = 1,
cx1 = gyx

Decryption will correctly output 1 unless z = xy mod q. The probability that z = xy mod q
occurs is 1/q which is negl(n).

Question 3: Prove that (Gen,Enc,Dec) is CPA-secure.

Solution:

Claim 5.2 The encryption scheme is CPA-secure.

Proof:
Overview. Observe that when c is an encryption of 0, then (h, c1, c2) = (gx, gy, gxy). When c is an
encryption of 1, then (h, c1, c2) = (gx, gy, gz), where x, y, z are independent and uniformly random
elements of Zq. The DDH problem asks an adversary to distinguish between these two types of
tuples.

We will prove that given an adversary A that breaks the security of the modified El Gamal scheme,
we can construct a different adversary B that will distinguish between DDH triples, breaking the
DDH assumption. Define B as follows:

1. B gets (G, q, g, h, c1, c2) as input.

2. B runs A on pk = (G, q, g, h) until A outputs two challenge messages m0 = 0 and m1 = 1
(This is without loss of generality because the message-space is {0, 1}).

3. B gives the ciphertext (c1, c2) to A and outputs whatever bit b′ is outputted by A.

Analysis. Consider the case where B’s inputs are generated by choosing uniformly random x, y ∈
Zq and setting h = gx, c1 = gy, and c2 = gxy. From A’s perspective, the experiment is distributed
identically to the CPA-security game when b = 0. It follows that:

Pr[B wins the DDH game given (gx, gy, gxy)] = Pr[A wins the CPA-security game | b = 0].

14

Name:

Now consider the other case, where B’s inputs are generated by running G(1n), choosing uniformly
random x, y, z ∈ Zq, and setting h = gx, c1 = gy, and c2 = gz. From A’s perspective, this is
distributed identically to the CPA-security game conditioned on b = 1. Consequently,

Pr[B wins the DDH game given (gx, gy, gz)] = Pr[A wins the CPA-security game | b = 1].

Putting these two equations together:

Pr[B wins the DDH game] =
1

2
· Pr[B wins the DDH game given (gx, gy, gxy)]

+
1

2
· Pr[B wins the DDH game given (gx, gy, gz)]

=
1

2
· Pr[A wins the CPA-security game | b = 0]

+
1

2
· Pr[A wins the CPA-security game | b = 1]

= Pr[A wins the CPA-security game]

=
1

2
+ non-negl(n).

This contradicts the hardness of the DDH problem in G. Therefore, our initial assumption was
false, and in fact, the encryption scheme is CPA-secure.

15

6 Pedersen Vector Commitments

6.1 The Commitment Scheme (20 Points)

We will examine an efficient way to commit to a long message. Let (G, q, g)← G(1n) be a crypto-
graphic group of prime order q for which discrete log is hard.

1. Gen(1n):

(a) Sample (G, q, g)← G(1n).
(b) Sample n+1 group elements g1, . . . , gn, h← G independently and uniformly at random.

Let g = (g1, . . . , gn).

(c) Output params = (G, q, g,g, h)

2. Commit(params,m; r):

(a) Let m = (m1, . . . ,mn) ∈ Zn
q . Let r ← Zq be sampled uniformly at random.

(b) Compute and output:

com = hr ·
n∏

i=1

gmi
i

3. Open :

(a) The committer outputs (m, r).

(b) The verifier checks whether com = Commit(params,m; r). If so, the verifier accepts, and
if not, the verifier rejects.

Note that the commitment to n values in Zq is a single group element in G, so the scheme is more
efficient than simply committing to each value separately.

16

Name:

Question 1: Prove that the commitment scheme is hiding.

Solution:

Theorem 6.1 The commitment scheme is hiding.

Proof:

1. Key Idea: hr is uniformly random in G over the randomness of r, so hr masks the value of∏n
i=1 g

mi
i .

2. For any message vector m and any parameters params, the output of Commit(params,m) is
uniformly random in G due to the randomness of r.

3. Then the commitment com∗ = Commit(params,mb) is actually independent of b. In this case,
the adversary’s probability of correctly guessing b is exactly 1

2 . Therefore, the scheme is
hiding.

Question 2: Prove that the commitment scheme is binding.

Solution:

Theorem 6.2 Since discrete log is hard in G, the commitment scheme is binding.

Proof:

1. Assume toward contradiction that there is an adversary A that breaks binding. Then we will
construct a PPT adversary B that breaks the discrete log assumption.

2. B will embed the discrete log instance into one index of the vector commitment and sample
the other indices of randomly.

Construction of B:

(a) Receive (G, q, g, gy) from the challenger.

(b) Sample i← [n], and set gi = gy.

(c) For each j ∈ [n] \ {i}, sample γj ← Zq and set gj := gγj . Also let g = (g1, . . . , gn).

(d) Sample η ← Zq and set h = gη.

(e) Run A on (G, q, g,g, h), and receive two openings (m, r) and (m′, r′). Check whether
mi = m′

i. If so, abort the computation. If not, continue.

17

(f) Compute and output:

y′ =

η · (r′ − r) +
∑

j∈[n]\{i}

γj · (m′
j −mj)

 · (mi −m′
i)
−1 mod q (1)

3. We will show that whenever Commit(params,m; r) = Commit(params,m′; r′) and mi ̸= m′
i,

then B outputs y′ = y and wins the discrete log game.

If Commit(params,m; r) = Commit(params,m′; r′) and mi ̸= m′
i, then:

hr ·
n∏

j=1

g
mj

j = hr
′ ·

n∏
j=1

g
m′

j

j

gη·r · gy·mi ·
∏

j∈[n]\{i}

gγj ·mj = gη·r
′ · gy·m′

i ·
∏

j∈[n]\{i}

gγj ·m
′
j

η · r + y ·mi +
∑

j∈[n]\{i}

γj ·mj = η · r′ + y ·m′
i +

∑
j∈[n]\{i}

γj ·m′
j mod q

y =

η · (r′ − r) +
∑

j∈[n]\{i}

γj · (m′
j −mj)

 · (mi −m′
i)
−1 mod q

y = y′

4. We will now show that with non-negligible probability, A’s output satisfies Commit(params,m; r) =
Commit(params,m′; r′) and mi ̸= m′

i.

(a) First note that B correctly simulates the hiding security game. The params given to A
by B have the same distribution as params in the hiding game. Therefore, with non-
negligible probability, A’s output satisfies Commit(params,m; r) = Commit(params,m′; r′)
and m ̸= m′.

(b) If m ̸= m′, then for at least one k ∈ [n] we have mk ̸= m′
k.

(c) A has no information about B’s choice of i. No matter which i-value is chosen by B, the
distribution of (g1, . . . , gn) is the same: they are sampled independently and uniformly
from G. Then:

Pr[mi ̸= m′
i|m ̸= m′] ≥ 1

n

Therefore, Pr[B breaks discrete log] ≥ Pr[A breaks hiding]
n , which is non-negligible.

18

Name:

6.2 Zero-Knowledge Opening Proof (20 Points)

Next, we will examine a protocol to open the commitment to a single index of the message vector
without revealing any information about the rest of the message.

As before, let com = Commit(params,m; r). The instance of the proof will be x = (params, com,mn),
and the witness will be w = (m1, . . . ,mn−1, r). A given pair (x,w) is considered valid if the following
relation is satisfied:

R(x,w) =

{
1 if com = Commit

(
params, (m1, . . . ,mn); r

)
0 else

Consider the following proof system for the above relation.

1. The prover samples a, a1, . . . , an−1 ← Zq independently and uniformly at random. Then they
send the verifier the following value A:

A = ha ·
n−1∏
i=1

gaii

2. The verifier samples b← Zq and sends it to the prover.

3. The prover sends the verifier the following values (c, c1, . . . , cn−1):

c = b · r + a

c1 = b ·m1 + a1
...

cn−1 = b ·mn−1 + an−1

4. The verifier outputs 1 if

A · (com)b = gb·mn
n · hc ·

n−1∏
i=1

gcii

and outputs 0 otherwise.

Question 3: Complete the verifier’s algorithm above so that the protocol satisfies completeness.

19

Question 4: Prove that the protocol satisfies completeness.

Solution: Let us assume that R(x,w) = 1, and the prover and verifier follow the protocol as-
written.

Then the verifier’s check (eq. (2)) is equivalent to each of the following equations:

A · (com)b = gb·mn
n · hc ·

n−1∏
i=1

gcii (2)

ha ·

(
n−1∏
i=1

gaii

)
· hb·r ·

(
n∏

i=1

gb·mi
i

)
= gb·mn

n · hb·r+a ·
n−1∏
i=1

gb·mi+ai
i (3)

gb·mn
n · hb·r+a ·

n−1∏
i=1

gb·mi+ai
i = gb·mn

n · hb·r+a ·
n−1∏
i=1

gb·mi+ai
i (4)

Equation (4) is a tautology – it is clearly true. This means the verifier will accept the proof with
probability 1, so the protocol satisfies completeness.

Question 5: Prove that the proof system satisfies honest-verifier zero-knowledge.

Solution:

Theorem 6.3 The protocol satisfies honest-verifier zero-knowledge.

Proof:

1. Let us assume that R(x,w) = 1, and the prover and verifier follow the protocol as-written.

2. The verifier’s view of the protocol comprises the following variables:

view(V ;x,w) = (x,A, b, c, c1, . . . , cn−1)

3. Now we will construct a simulator SimV (x) that simulates view(V ;x,w).
Construction of SimV (x) :

(a) Sample b, c, c1, . . . , cn−1 ← Zq independently and uniformly at random.

(b) Compute

A = (com)−b · gb·mn
n · hc ·

n−1∏
i=1

gcii

(c) Output (x,A, b, c, c1, . . . , cn−1).

4. Now we will argue that the simulator’s output has the same distribution as view(V ;x,w).

20

Name:

(a) In the real protocol, b is uniformly random in Zq, as it is in the simulated protocol.

(b) For any given values of (b, r,m1, . . . ,mn) the values of (c, c1, . . . , cn−1) are independent
and uniformly random in Zq, due to the randomness of (a, a1, . . . , an−1).

(c) For any given values of
(
b, r, (m1, . . . ,mn), (c, c1, . . . , cn−1)

)
, A is the unique value that

satisfies eq. (2). So

A = (com)−b · gb·mn
n · hc ·

n−1∏
i=1

gcii

This shows that the distribution of (x,A, b, c, c1, . . . , cn−1) in the real protocol is the same as
the distribution of the simulator’s output.

Therefore, the protocol satisfies honest-verifier zero-knowledge.

21

	Multiple Choice (25 Points)
	CCA Security
	A Scheme For n-Bit Messages (20 Points)
	Concatenating The Base Scheme (15 Points)

	One-Way Functions (25 Points)
	Derandomizing Signatures (25 Points)
	A Variation on El Gamal Encryption (20 points)
	Pedersen Vector Commitments
	The Commitment Scheme (20 Points)
	Zero-Knowledge Opening Proof (20 Points)

