CS 171, Spring 2024 Prof. Sanjam Garg

CS 171: Problem Set 10

Due Date: April 25, 2024 at 8.59pm via Gradescope

1 Proof of Decryption (10 Points)

We will construct a zero-knowledge proof system for DDH triples. This can be used to prove
that a given El Gamal ciphertext was decrypted correctly without revealing the secret de-
cryption key.

Let pp = (G, q,g9) < G(1™) be a group in which DDH is hard. Let £ be the language of
DDH triples for this group:

L={(pp.g% g% 9% :c=a-b mod q}

Given an instance x = (pp,ga,gb,gc) € L, let the corresponding witness be w = b. The
witness provides a simple way to verify that = € L:

Lif g* =g°and (4°)" = ¢°

0 else

R(z,w) = {

We can also prove that = € £ without revealing the witness to the verifier. To do so, we
will construct a zero-knowledge proof below.

A Zero-Knowledge Protocol for L:

A

e Inputs: The prover P takes inputs (1>‘,$,w) and the verifier V' takes inputs (17, x).

T = (pp7ga7gbagc), and w S Zq.

P samples x < Zq, computes ¢g* = (¢*)*, and sends (g%, ¢*) to V. Note that t = a - x
mod gq.

V samples y < Z, and sends y to P.

P computes z=w -y + x and sends z to V.

V checks that:

1. ¢ = (") - g%, and
2. (9 = (¢ - ¢"

If both checks pass, then the verifier accepts the proof. Otherwise, they reject.

Questions:
1. Show that this proof system satisfies completeness and soundness.
2. Show that this proof system satisfies honest-verifier zero-knowledge.

The definitions of completeness, soundness, and honest-verifier zero-knowledge are given
in Discussion 11.

CS 171, Spring 2024 Prof. Sanjam Garg

2 Hiding and Binding For KZG Commitments (15 Points)

In discussion 11, we showed that the basic KZG commitment protocol is not hiding because
the Commit function is deterministic. In section below, we give a modified version of the
scheme in which the Commit function is randomized.

Question: Prove that the commitment scheme given in section satisfies the notions of
hiding and polynomial binding given in section assuming that the d-discrete log problem
is hard.

2.1 A Randomized Polynomial Commitment Scheme
1. Gen(1™):

(a) Let d be polynomial in n.
(b) Set up a bilinear map by sampling

pp = (Ga GT7Q7976) — g(ln)

(c) Sample h <~ G and 7 « Z.
(d) Finally, output

params = (pp,gT,g(TQ), .. ,g(Td), h,h", h(TQ), ceey h(Td))

2. Commit(params, f):

(a) Let f be a polynomial € Z,[X] of degree < d:

d
FX)=> ai- X'
=0

where every a; € Z.

(b) Sample a polynomial r € Z4[X] of degree < d uniformly at random. In other
words, sample By, ..., 3q < Z4 independently and uniformly at random, and let

d
r(X)=>_Bi-X’
=0

(¢) Compute and output the commitment:

d RN
com = [(g(m) 11
=0 1=0

— g I

()"

Note: We also define Commit(params, f;7) to take the random polynomial r as input,
rather than sampling r internally.

CS 171, Spring 2024 Prof. Sanjam Garg

2.2 Definitions

Hiding basically says that Commit(f, params) doesn’t reveal any information about f. The
definition of hiding resembles the definition of CPA security.

Definition 2.1 (Hiding)

Hiding-Game(n, A):

1. The challenger samples params < Gen(1™) and sends params to the adversary A.
2. A outputs two polynomials fo, f1 € Zy[X] of degree < d.

3. The challenger samples b < {0,1} and computes: com* = Commit(params, f3,). They
send com™* to A.

4. A outputs a guess b for b. The output of the game is 1 if b’ = b and 0 otherwise.
The commitment scheme is hiding if for any PPT adversary A,
1
Pr[Hiding-Game(n, A) — 1] < 3t negl(n)
Next, we’ll consider a notion called polynomial binding, which says that the adversary

cannot find two inputs to Commit that produce the same commitment. This resembles the
definition of collision-resistance.

Definition 2.2 (Polynomial Binding)

Polynomial-Binding-Game(n, A):

1. The challenger samples params < Gen(1") and sends params to the adversary A.

2. A outputs two pairs (fo,r0) and (f1,71), where fo,ro, f1,71 are polynomials € Z4[X] of
degree < d.

3. The output of the game is 1 if fo # f1, and
Commit(params, fo;r9) = Commit(params, f1;71)
Otherunse, the output of the game is 0.
The commitment scheme satisfies polynomial binding if
Pr[Polynomial-Binding-Game(n, A) — 1] < negl(n)
Finally, we will prove polynomial binding using the hardness of the following problem.

Definition 2.3 (A Variant of Discrete Log)
d-Discrete-Log(n, A):

1. Let d be polynomial in n.

CS 171, Spring 2024 Prof. Sanjam Garg

2. The challenger samples pp = (G,Gr,q,g,¢e) < G(1") as well as 7 < Z,. Then they
send the adversary: <pp, q’, 9(72), e ,g(Td))

3. The adversary A outputs a guess 7' for . The output of the game is 1 if ' =7 and 0
otherwise.

The d-discrete-log problem is hard if for any PPT adversary A,
Pr[d-Discrete-Log(n,.A) — 1] < negl(n)

Note that if the d-discrete-log problem is hard, then in addition, the regular discrete log
problem is hard for G.

CS 171, Spring 2024 Prof. Sanjam Garg

3 Course Evaluation (Extra Credit: 2 Points)

Complete your course evaluation for this course. You can write as much or as little as you
want. Include a screenshot of the submission receipt when you submit this assignment to
Gradescope to prove that you’ve finished your evaluation.

	Proof of Decryption (10 Points)
	Hiding and Binding For KZG Commitments (15 Points)
	A Randomized Polynomial Commitment Scheme
	Definitions

	Course Evaluation (Extra Credit: 2 Points)

